Graph Matching - Challenges and Potential Solutions
نویسندگان
چکیده
Structural pattern representations, especially graphs, have advantages over feature vectors. However, they also suffer from a number of disadvantages, for example, their high computational complexity. Moreover, we observe that in the field of statistical pattern recognition a number of powerful concepts emerged recently that have no equivalent counterpart in the domain of structural pattern recognition yet. Examples include multiple classifier systems and kernel methods. In this paper, we survey a number of recent developments that may be suitable to overcome some of the current limitations of graph based representations in pattern recognition.
منابع مشابه
ON THE MATCHING NUMBER OF AN UNCERTAIN GRAPH
Uncertain graphs are employed to describe graph models with indeterministicinformation that produced by human beings. This paper aims to study themaximum matching problem in uncertain graphs.The number of edges of a maximum matching in a graph is called matching numberof the graph. Due to the existence of uncertain edges, the matching number of an uncertain graph is essentially an uncertain var...
متن کاملMatching Integral Graphs of Small Order
In this paper, we study matching integral graphs of small order. A graph is called matching integral if the zeros of its matching polynomial are all integers. Matching integral graphs were first studied by Akbari, Khalashi, etc. They characterized all traceable graphs which are matching integral. They studied matching integral regular graphs. Furthermore, it has been shown that there is no matc...
متن کاملAn Analysis of Ontology Matching Challenges and Its Systems
This paper aims at analyzing the key challenges of the ontology matching field and the system which worked on these challenges. There has been an enormous effort to provide a range of solutions to the matching problem by developing a variety of tools, yet it does not appear to be a finest one that is a standard for developing other matching tools. In this paper we first provide the basics of on...
متن کاملLarge Scale Graph Matching(LSGM): Techniques, Tools, Applications and Challenges
Large Scale Graph Matching (LSGM) is one of the fundamental problems in Graph theory and it has applications in many areas such as Computer Vision, Machine Learning, Pattern Recognition and Big Data Analytics (Data Science). Matching belongs to the combinatorial class of problems which refers to finding correspondence between the nodes of a graph or among set of graphs (subgraphs) either precis...
متن کاملBounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کامل